Heat Transfer Mechanisms During Flow Boiling in Microchannels

نویسنده

  • Satish G. Kandlikar
چکیده

The forces due to surface tension and momentum change during evaporation, in conjunction with the forces due to viscous shear and inertia, govern the two-phase flow patterns and the heat transfer characteristics during flow boiling in microchannels. These forces are analyzed in this paper, and two new nondimensional groups, K1 and K2 , relevant to flow boiling phenomenon are derived. These groups are able to represent some of the key flow boiling characteristics, including the CHF. In addition, a mechanistic description of the flow boiling phenomenon is presented. The small hydraulic dimensions of microchannel flow passages present a large frictional pressure drop in single-phase and two-phase flows. The small hydraulic diameter also leads to low Reynolds numbers, in the range 100–1000, or even lower for smaller diameter channels. Such low Reynolds numbers are rarely employed during flow boiling in conventional channels. In these low Reynolds number flows, nucleate boiling systematically emerges as the dominant mode of heat transfer. The high degree of wall superheat required to initiate nucleation in microchannels leads to rapid evaporation and flow instabilities, often resulting in flow reversal in multiple parallel channel configuration. Aided by strong evaporation rates, the bubbles nucleating on the wall grow rapidly and fill the entire channel. The contact line between the bubble base and the channel wall surface now becomes the entire perimeter at both ends of the vapor slug. Evaporation occurs at the moving contact line of the expanding vapor slug as well as over the channel wall covered with a thin evaporating film surrounding the vapor core. The usual nucleate boiling heat transfer mechanisms, including liquid film evaporation and transient heat conduction in the liquid adjacent to the contact line region, play an important role. The liquid film under the large vapor slug evaporates completely at downstream locations thus presenting a dryout condition periodically with the passage of each large vapor slug. The experimental data and high speed visual observations confirm some of the key features presented in this paper. @DOI: 10.1115/1.1643090#

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Liquid-Vapor Phase Distribution on the Heat Transfer Mechanisms during Flow Boiling in Minichannels and Microchannels

Heat transfer during flow boiling in minichannels and microchannels is intimately linked to the liquid-vapor phase distribution in the channels. The vapor phase exists as nucleating bubbles, dispersed bubbles, elongated bubbles, an annular core, or all vapor flow completely filling the channel. Similarly, the liquid can exist as bulk liquid, slugs, thin film on the heated wall, or dispersed dro...

متن کامل

Scale effects on flow boiling heat transfer in microchannels: A fundamental perspective

Flow boiling in microchannels has received considerable attention from researchers worldwide in the last decade. A scaling analysis is presented to identify the relative effects of different forces on the boiling process at microscale. Based on this scaling analysis, the flow pattern transitions and stability for flow boiling of water and FC-77 are evaluated. From the insight gained through the...

متن کامل

A Systematic Investigation of the Effects of Microchannel Width, Depth, and Aspect Ratio on Convective Boiling Heat Transfer and Flow Regimes in Parallel Microchannels

Experiments are conducted with a perfluorinated dielectric fluid, Fluorinert FC-77, to investigate the effects of channel width, depth, and aspect ratio on flow boiling heat transfer and flow patterns in microchannels. Experiments are performed for a fixed mass flux of 630 kg/ms with eleven different silicon test pieces containing parallel microchannels of widths ranging from 100 μm to 5850 μm ...

متن کامل

The Critical Role of Channel Cross-Sectional Area in Microchannel Flow Boiling Heat Transfer

Experiments are conducted with a perfluorinated dielectric fluid, Fluorinert FC-77, to identify the critical geometric parameters that affect flow boiling heat transfer and flow patterns in microchannels. In recent work by the authors (Harirchian and Garimella IJMF 35:349-362, 2009), seven different silicon test pieces containing parallel microchannels of widths ranging from 100 μm to 5850 μm, ...

متن کامل

A Scale Analysis Based Theoretical Force Balance Model for Critical Heat Flux „CHF... During Saturated Flow Boiling in Microchannels and Minichannels

Accurate prediction of critical heat flux (CHF) in microchannels and minichannels is of great interest in estimating the safe operational limits of cooling systems employing flow boiling. Scale analysis is applied to identify the relevant forces leading to the CHF condition. Using these forces, a local parameter model is developed to predict the flow boiling CHF. The theoretical model is an ext...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004